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Abstract

This paper proposes an innovative algorithm named 2D-LDA, which directly extracts the proper features from

image matrices based on Fisher�s Linear Discriminant Analysis. We experimentally compare 2D-LDA to other feature

extraction methods, such as 2D-PCA, Eigenfaces and Fisherfaces. And 2D-LDA achieves the best performance.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Feature extraction is the key to face recogni-

tion, as it is to any pattern classification task.

The aim of feature extraction is reducing the

dimensionality of face image so that the extracted

features are as representative as possible. The class
of image analysis methods called appearance-

based approach has been of wide concern, which

relies on statistical analysis and machine learning.

Turk and Pentland (1991) presented the well-

known Eigenfaces method for face recognition,

which uses principal component analysis (PCA)
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for dimensionality reduction. However, the base

physical similarity of the represented images to

originals does not provide the best measure of use-

ful information for distinguishing faces from one

another (O�Toole, 1993). Belhumeur et al. (1997)

proposed Fisherfaces method, which is based on

Fisher�s Linear Discriminant and produces well
separated classes in a low-dimensional subspace.

His method is insensitive to large variation in

lighting direction and facial expression.

Recently, Yang (2002) investigated the Kernel

PCA for learning low dimensional representations

for face recognition and found that the Kernel

methods provide better representations and

achieve lower error rates for face recognition.
Bartlett et al. (2002) proposed using ICA for face

representation, which is sensitive to the high-order
ed.
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statistics. This method is superior to representa-

tions based on PCA for recognizing faces across

days and changes in expression. However, Kernel

PCA and ICA are both computationally more

expensive than PCA. Weng et al. (2003) presented
a fast method, called candid covariance-free IPCA

(CCIPCA), to obtain the principal components of

high-dimensional image vectors. Moghaddan

(2002) compared the Bayesian subspace method

with several PCA-related methods (PCA, ICA,

and Kernel PCA). The experimental results dem-

onstrated its superiority over PCA, ICA and Ker-

nel PCA.
All the PCA-related methods discussed above

are based on the analysis of vectors. When dealing

with images, we should firstly transform the image

matrixes into image vectors. Then based on these

vectors the covariance matrix is calculated and

the optimal projection is obtained. However, face

images are high-dimensional patterns. For exam-

ple, an image of 112 · 92 will form a 10304-dimen-
sional vector. It is difficult to evaluate the

covariance matrix in such a high-dimensional

vector space. To overcome the drawback, Yang

proposed a straightforward image projection tech-

nique, named as image principal component analy-

sis (IMPCA) (Yang et al., 2004), which is directly

based on analysis of original image matrices. Dif-

ferent to traditional PCA, 2D-PCA is based on
2D matrices rather than 1D vectors. This means

that the image matrix does not need to be con-

verted into a vector. As a result, 2D-PCA has

two advantages: easier to evaluate the covariance

matrix accurately and lower time-consuming. Liu

et al. (1993) proposed an iterative method to calcu-

late the Foley-Sammon optimal discriminant vec-

tors from image matrixes. And he proposed to
substitute Dt = Db+Dw for Dw to overcome the sin-

gularity problem. Liu�s method was complicate

and didn�t resolve the singularity problem well.

In this paper, a statistical linear discriminant

analysis for image matrix is discussed. Our

method proposes to use Fisher linear projection

criterion to find out a good projection. This crite-

rion is based on two parameters: the between-class
scatter matrix and the within-class scatter matrix.

Because the dimension of between-class and

within-class scatter matrix is much low (compara-
tive to number of training samples). So, the prob-

lem, that the within-class scatter matrix maybe

singular, will be handled. At the same time, the

compute-costing is lower than traditional Fisher-

faces. Moreover, we discuss about image recon-
struction and conduct a series of experiments on

the ORL face database.

The organization of this paper is as follows: In

Section 2, we propose the idea and describe the

algorithm in detail. In Section 3, we compare

2D-LDA with Eigenfaces, Fisherfaces and 2D-

PCA on the ORL face database. Finally, the paper

concludes with some discussions in Section 4.
2. Two-dimensional linear discriminant analysis

2.1. Principle: The construction of Fisher projection

axis

Let A denotes a m · n image, and x denotes an
n-dimensional column vector. A is projected onto

x by the following linear transformation

y ¼ Ax: ð1Þ

Thus, we get an m-dimensional projected vector

y, which is called the feature vector of the image A.
Suppose there are L known pattern classes in

the training set, and M denotes the size of the

training set. The jth training image is denoted by

an m · n matrix Aj (j = 1,2, . . . ,M), and the mean

image of all training sample is denoted by A and

Ai ði ¼ 1; 2; . . . ; LÞ denoted the mean image of

class Ti and Ni is the number of samples in class

Ti, the projected class is Pi. After the projection

of training image onto x, we get the projected fea-
ture vector

yj ¼ Ajx; j ¼ 1; 2; . . . ;M : ð2Þ

How do we judge a projection vector x is good?

In fact, the total scatter of the projected samples

can be characterized by the trace of the covariance

matrix of the projected feature vectors (Turk and

Pentland, 1991). From this point of view, we intro-
duced a criterion at first,

JðxÞ ¼ PB

PW

: ð3Þ
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There were two parameters

PB ¼ trðTSBÞ; ð4Þ

PW ¼ trðTSWÞ; ð5Þ
where TSB denotes the between-class scatter

matrix of projected feature vectors of training

images, and TSW denotes the within-class scatter

matrix of projected feature vectors of training

images. So,

TSB ¼
XL
i¼1

Nið�yi � �yÞð�yi � �yÞT

¼
XL
i¼1

Ni½ðAi � AÞx�½ðAi � AÞx�T; ð6Þ

TSW ¼
XL
i¼1

X
yk2P i

ðyk � �yiÞðyk � yiÞ
T

¼
XL
i¼1

X
yk2P i

½ðAk � AiÞx�½ðAk � AiÞx�T: ð7Þ

So

trðTSBÞ ¼ xT
XL
i¼1

NiðAi � AÞTðAi � AÞ
 !

x

¼ xTSBx; ð8Þ

trðTSWÞ ¼ xT
XL
i¼1

X
Ak2T i

ðAk � AiÞTðAk � AiÞ
 !

x

¼ xTSWx: ð9Þ
We could evaluate TSB and TSW directly using the

training image samples.

So, the criterion could be expressed by

JðxÞ ¼ xTSBx

xTSWx
; ð10Þ

where x is a unitary column vector. This criterion is

called Fisher linear projection criterion. The unitary

vector x that maximizes J(x) is called the Fisher

optimal projection axis. The optimal projection xopt
is chosen when the criterion is maximized, i.e.,

xopt ¼ argmax
x

JðxÞ: ð11Þ

If SW is nonsingular, the solution to above opti-

mization problem is to solve the generalized eigen-

value problem (Turk and Pentland, 1991):
SBxopt ¼ kSWxopt: ð12Þ

In the above equation, k is the maximal eigenvalue

of S�1
W SB.

The traditional LDAmust face to the singularity
problem. However, 2D-LDA overcomes this prob-

lem successfully. This is because: For each training

image, Aj (j = 1,2, . . .,M), we have rank(Aj) =
min(m,n).

From (9), we have

rankðSWÞ ¼ rank
XL
i¼1

X
Ak2T i

ðAk � AiÞTðAk � AiÞ
 !

6 ðM � LÞ �minðm; nÞ: ð13Þ

So, in 2D-LDA, SW is nonsingular when

M P Lþ n
minðm; nÞ : ð14Þ

In real situation, (14) is always satisfied. So, SW

is always nonsingular.

In general, it is not enough to have only one
Fisher optimal projection axis. We usually need

to select a set of projection axis, x1, . . . ,xd, subject
to the orthonormal constraints. That is,

fx1; . . . ; xdg ¼ argmax JðxÞ
xT
i xj ¼ 0; i 6¼ j; i; j ¼ 1; . . . ; d:

�
ð15Þ

In fact, the optimal projection axes, x1, . . . ,xd,
are the orthonormal eigenvectors of S�1

W SB corre-

sponding to the first d largest eigenvalues.

Using these projection axes, we could form a

new Fisher projection matrix X, which is a n · d
matrix,

X ¼ ½ x1 x2 � � � xd �: ð16Þ
2.2. Feature extraction

We will use the optimal projection vectors of

2D-LDA, x1, . . . ,xd, for feature extraction. For a

given image A, we have

yk ¼ Axk; k ¼ 1; 2; . . . ; d: ð17Þ
Then, we have a family of Fisher feature vectors

y1, . . .,yd, which formed a m · d matrix

Y = [y1, . . . ,yd]. We called this matrix Y as the

Fisher feature matrix of the image A.
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2.3. Reconstruction

In the 2D-LDA method, we can use the Fisher

feature matrixes and Fisher optimal projection

axes to reconstruct a image by following steps.
For a given image A, the Fisher feature matrix

is Y = [y1, . . . ,yd] and the Fisher optimal projection

axes X = [x1, . . . ,xd], then we have

Y ¼ AX : ð18Þ

Because x1, . . . ,xd are orthonormal, it is easy to

obtain the reconstructed image of A:

eA ¼ YXT ¼
Xd
k¼1

ykx
T
k : ð19Þ

We called eAk ¼ ykx
T
k as a reconstructed subimage of

A, which have the same size as imageA. This means

that we use a set of 2D Fisherfaces to reconstruct

the original image. If we select d = n, then we can

completely reconstruct the images in the training

set: eA ¼ A. If d < n, the reconstructed image eA is

an approximation for A.
2.4. Classification

Given two images A1, A2 represented by 2D-

LDA feature matrix Y1 ¼ ½y11; . . . ; y1d � and

Y2 ¼ ½y21; . . . ; y2d �. So the similarity d(Y1,Y2) is de-

fined as

dðY1;Y2Þ ¼
Xd
k¼1

ky1k � y2kk2; ð20Þ

where ky1k � y2kk2 denotes the Euclidean distance

between the two Fisher feature vectors y1k and y2k .
If the Fisher feature matrix of training images

are Y1,Y2, . . . ,YM (M is the total number of train-

ing images), and each image is assigned to a class
Ti. Then, for a given test image Y, if d(Y,Yl) =
Fig. 1. Five images in
minjd(Y1,Yj) and Yl 2 Ti, then the resulting deci-

sion is Y 2 Ti.

3. Experiment and analysis

We evaluated our 2D-LDA algorithm on the

ORL face image database. The ORL database

(http://www.cam-orl.co.uk) contains images of 40

individuals, each person have 10 different images.

For some individuals, the images were taken at

different times. The facial expression (open or

closed eyes, smiling or nonsmiling) and facial de-
tails (glasses or no glasses) also vary. All the

images were taken against a dark homogeneous

background with the subjects in an upright, frontal

position (with tolerance for some side movement).

The images were taken with a tolerance for some

titling and rotation of the face of up to 20�. More-

over, there is also some variation in the scale of up

to about 10%. The size of each image is 92 · 112
pixels, with 256 grey levels per pixel. Five samples

of one person in ORL database are shown in

Fig. 1. So, we could use the ORL: database to

evaluate 2D-LDA�s performance under conditions

where pose and the size of sample are varied.

Using 2D-LDA, we could project the test face

image onto the Fisher optimal projection axis,

then we could use the Fisher feature vectors set
to reconstruct the image. In Fig. 2, some recon-

structed images and the original image of one per-

son were given out. In Fig. 2, the variance d

denotes the number of dimension used to map

and reconstruct the face image. As observed these

images, we could find that the reconstructed

images are very like obtained by sample the origi-

nal image on the spacing vertical scanning line.

The reconstructed image eA is more and more like

to the original image A as the value of d increased.

We have done an experiment on the ORL data-

base to evaluate performance of 2D-LDA, 2D-
ORL database.

http://www.cam-orl.co.uk


Fig. 2. Some reconstructed images of one person.
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PCA (Yang et al., 2004), Eigenfaces (Turk and

Pentland, 1991), Fisherfaces (Belhumeur et al.,

1997). To evaluate the pure ability of these four

in the fair environment, we did not do any prepro-

cess on the face images, and we did not utilize any

optimized algorithm. We just realized the algo-

rithm appeared in the literature (Turk and Pent-

land, 1991; Belhumeur et al., 1997 and Yang
et al., 2004) without any modification. In our

experiment, we select first five images samples

per person for training, and the left five images

samples for testing. So, in our experiment, the size

of training set and testing set were both 200. So in

the 2D-LDA, the size of between-class scatter ma-

trix SB and within-class scatter matrix SW are both

92 · 92. Fig. 3 shows the classification result.
From Fig. 3, we find that the recognition rate of

2D-LDA have achieved the best performance in

the four methods. And the best result of 2D-

LDA 94.0% is much better than the best result

of 2D-PCA 92.5%. And from Fig. 3, we could find

that the two 2D feature extraction methods have

outstanding performance in the low-dimension
Fig. 3. Comparison of 2D-LDA and 2D-PCA on ORL

Database.
condition, but the conventional ones� ability is

very poor.

Table 1 showed out the comparison of the train-

ing time of the four algorithms (CPU: Pentium IV

2.66GHz, RAM: 256M). The four algorithms are

realized in the Matlab environment. We could see

that the 2D-LDA and 2D-PCA�s computing-cost

is very low compared with Eigenfaces and Fisher-
faces. This is because in the 2D condition, we only

need to handle a 92 · 92 matrix. But using the

Eigenfaces and Fisherfaces, we must face to a

10304 · 10304 matrix. It is a hard work. At last,

It must be mentioned that when used the Fisher-

faces, we must reduced the dimension of image

data to avoid that SW is singular (Belhumeur

et al., 1997). Mapping the original data onto
how many dimensions space is a hard problem.

We must select the proper number of dimension

through experiment. Considering this situation,

Fisherfaces is very time-costing.

Table 2 showed that the memory cost of 2D fea-

ture extraction is much larger than the 1D ones.

This is because 2D methods used a n · d matrix

to present a face image. At the same time the 1D
techniques reconstructed face images by a d-

dimension vector.
Table 2

Comparison of memory cost (bytes) to present a 92 · 112 image

using different techniques (15 dimensions)

2D-LDA 2D-PCA Eigenfaces Fisherfaces

6720 6720 60 60

Table 1

Comparison of CPU Time (s) for feature extraction using ORL

database (15 dimensions)

2D-LDA 2D-PCA Eigenfaces Fisherfaces

0.4210 0.4210 28.5000 32.5310
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4. Conclusion

In this paper, a new algorithm for image feature

extraction and selection was proposed. This meth-

od uses the Fisher Linear Discriminant Analysis to
enhance the effect of variation caused by different

individuals, other than by illumination, expres-

sion, orientation, etc. 2D-LDA uses the image ma-

trix instead of the image vector to compute the

between-class scatter matrix and the within-class

scatter matrix.

From our experiments, we can see that the 2D-

LDA have many advantages over other methods.
2D-LDA achieves the best recognition accuracy

in the four algorithms. And this technique�s com-

puting cost is very low compared with Eigenfaces

and Fisherfaces, and close to 2D-PCA. At the

same time, this method shows powerful perfor-

mance in the low dimension. From Fig. 2, we

can see that this new projection method is very like

to select spacing vertical scanning lines to present a
image. Maybe this is the reason that this algorithm

is so effective in image classification.

2D-LDA still has its shortcoming. It needs

more memory to store a image than the Eigenfaces

and Fisherfaces.
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